O.M.G !

Problem:

Find positive whole values for a,b,c such that \frac{a}{b+c} + \frac{b}{a+c} + \frac{c}{a+b}=4. \quad(*)


Solution:

Given

y^2=x^3 +(4n^2+12n-3)x^2+32(n+3)x\quad\quad\quad(1)

where n is an integer; x,y are rationals, the map

\begin{cases} a=\frac{8(n+3)-x+y}{2(4-x)(n+3)}, \\ b=\frac{8(n+3)-x-y}{2(4-x)(n+3)}, \\ c=\frac{-4(n+3)-(n+2)x}{(4-x)(n+3)} \end{cases}\;(2)\implies \;\frac{a}{b+c} + \frac{b}{a+c} + \frac{c}{a+b} - n=0.

i.e.,

for a fixed n and (x,y) on (1), (a,b,c) generated by (2) \implies \frac{a}{b+c} + \frac{b}{a+c} + \frac{c}{a+b} = n\quad(3)

Notice also

f(\square,\blacksquare,\circ)\overset{\Delta}{=}\frac{\square}{\blacksquare+\circ} + \frac{\blacksquare}{\square+\circ} + \frac{\circ}{\square+\blacksquare} \implies f(t\cdot a, \; t\cdot b, \; t\cdot c) = f(a, b, c).\quad\quad\quad(4)

Moreover, starting with (x_1, y_1) on

y^2 = x^3+px^2+qx+r,\quad\quad\quad(5)

the following map generates successive rational points (x_i, y_i) on (5):

\begin{cases} i=2:x_2 = (\frac{3x_1^2+2px_1+q}{2y_1})^2-p-2x_1, \; y_2 = -y_1 + \frac{(3{x_1}^2+2px_1+q)}{2y_1}(x_1-x_2) \\ i>2: x_i = \left(\frac{y_{i-1}-y_1}{x_{i-1}-x_1}\right)^2-p-x_1-x_{i-1}, \; y_i= -y_1+\frac{y_{i-1}-y_1}{x_{i-1}-x_1}(x_1-x_i)\; \end{cases}(6)


Let n=4, we have

y^2=x^3+109x+224x\quad\quad(7)

\begin{cases} a=\frac{56-x-y}{14(4-x)} \\ b=\frac{8(56-x-y)}{14(4-x)} \\ c=\frac{-28-6x}{7(4-x)} \end{cases}\quad\quad\quad(8)

and

\begin{cases} i=2:x_2 = (\frac{3x_1^2+218x_1+224}{2y_1})^2-109-2x_1, \; y_2 = -y_1 + \frac{(3{x_1}^2+218x_1+224)}{2y_1}(x_1-x_2) \\ i>2: x_i = \left(\frac{y_{i-1}-y_1}{x_{i-1}-x_1}\right)^2-109-x_1-x_{i-1}, \; y_i= -y_1+\frac{y_{i-1}-y_1}{x_{i-1}-x_1}(x_1-x_i)\; \end{cases}(9)


We solve (*) using the Omega Computer System Explorer (see Fig. 3).

Staring with the point (x_1, y_1) = (-100, 260) on (7) (see Fig. 1),

Fig. 1

(8) yields

a=\frac{2}{7}, b=\frac{-1}{14}, c=\frac{11}{14}.

By (4), a,b,c are modified by multiplying their common denominator:

a=4,b=-1,c=11.

Even though

\frac{a}{b+c} + \frac{b}{a+c} + \frac{c}{a+b} = \frac{4}{-1+11} + \frac{-1}{4+11} + \frac{11}{4+(-1)} = 4

as expected, it is not a solution of (*) since b = -1 <0.

Using (9), the CAS gives:

(x_2, y_2) = (\frac{8836}{25}, \frac{-950716}{125}).

The corresponding values of a, b, c are

a=9499, b=-8784, c=5165.

But alas – it is still not a solution!

Undeterred, the CAS generates (x_i, y_i) and calculates a,b,c again and again for i = 3, 4, 5, ..., 9.

At last, the a, b, c are all positive integers:

Fig. 2


Fig. 3


Exercise-1 Show that (3) is true.

Exercise-2 Show that (4) is true.

Exercise-3 Deriving (6).

Exercise-3 Solving (*) for values other than 4.