Solving Minimization and Maximization Problems without Calculus [2]

Problem:

Shooting an object into the air at an angle \theta

where

\begin{cases} x = v_0\cos(\theta)t \quad\quad\quad\quad\quad\quad(1-1)\\ y = v_0\sin(\theta)t - \frac{1}{2}gt^2\quad\quad\quad(1-2)\end{cases}

With v_0 fixed, find the angle \theta \;\; (0 < \theta <\frac{\pi}{2}) so that the object lands the maximum distance on the ground.


Solution:

When the object lands at time t, y = 0. By (1-2)

0 = v_0\sin(\theta) t - \frac{1}{2}gt^2.\quad\quad\quad(1-3)

Solving (1-1) for t yields

t = \frac{x}{v_0 cos(\theta)}.

Substituting it into (1-3) gives 0 = v_0\sin(\theta)\frac{x}{v_0\cos(\theta)}-\frac{1}{2}g\left(\frac{x}{v_0\cos(\theta)}\right)^2. i.e.,

0 = v_0^2\sin(\theta)\cos(\theta)x-\frac{1}{2}gx^2.

Or

x = \frac{2v_0^2\sin(\theta)\cos(\theta)}{g} = \frac{v_0^2\sin(2\theta)}{g}.

Since v_0, g are positive quantities, x>0 requires \sin(2\theta) > 0. That is,

\sin(2\theta) = |\sin(2\theta)| \le 1.\quad\quad\quad(1-4)

Hence,

x = \frac{v_0^2\sin(2\theta)}{g} \overset{(1-4)}{\le}\frac{v_0^2}{g} \implies x_{max}=\frac{v_0^2}{g}

and it occurs when \sin(2\theta) = 1 or 2\theta = \frac{\pi}{2} \implies \theta = \frac{\pi}{4}.

See also “Solving Minimization and Maximization Problems without Calculus [1]“.

Why probability lies between 0 and 1 inclusive


Consider any repeatable experiment whose outcome is non-deterministic.

Suppose with n trials, the occurrence of outcome A is n_A. The ratio \frac{n_A}{n} lies between 0 and 1 inclusive. i.e.,

0 \le \frac{n_A}{n} \le 1.\quad\quad\quad(1)

If we define the probability of outcome A as

P(A) = \lim\limits_{n \to \infty}\frac{n_A}{n},\quad\quad\quad(2)

we must have

0 \le P(A) \le 1\quad\quad\quad(*)

as a result.

To show that (*) is true, we first prove

\left(a_n \le b_n, \lim\limits_{n\to \infty}a_n = a, \lim\limits_{n \to \infty} b_n =b\right) \implies a\le b\quad\quad\quad(3)

by reductio ad abusrdum:

If a > b then by definition,

\exists n_1 \ni n>n_1 \implies |a_n-a| <\frac{a-b}{2};

\exists n_2 \ni n>n_2 \implies |b_n-b| <\frac{a-b}{2}.

It means for n > n_*= max(n_1, n_2) ,

|a_n-a| < \frac{a-b}{2} \implies \underline{-\frac{a-b}{2} < a_n-a }< \frac{a-b}{2}\implies a_n > \frac{a+b}{2};

|b_n-b| < \frac{a-b}{2} \implies -\frac{a-b}{2} < \underline{b_n-b < \frac{a-b}{2}} \implies b_n < \frac{a+b}{2}.

And so b_n < a_n which contradicts a_n \le b_n.

Express a_n, b_n in (3) as c_n,  a_n respecitvely, we have

\left(c_n \le a_n, \lim\limits_{n\to \infty}c_n = c, \lim\limits_{n \to \infty} a_n =a\right) \implies c\le a

Hence,

\left(c_n \le a_n \le b_n, \lim\limits_{n\to \infty}c_n =c,  \lim\limits_{n\to \infty}a_n=a, \lim\limits_{n\to \infty}b_n=b\right)\implies c\le a\le b.\quad(4)

Now, let c_n = 0, a_n=\frac{n_A}{n}, b_n=1.

We have

c = \lim\limits_{n\to \infty} c_n =\lim\limits_{n\to \infty} 0 = 0,

a = \lim\limits_{n \to \infty}a_n = \lim\limits_{n \to \infty} \frac{n_A}{n} = P(A),

b = \lim\limits_{n\to \infty} b_n =\lim\limits_{n\to \infty} 1 = 1.

It follows that by (1) and (4),

0  \le P(A) \le 1.