The foundation of a technique for evaluating definite integrals

Given f(x) is continuous on [a, b] and \phi(t) satisfies the following conditions:

[1] \forall t \in [\alpha, \beta], \phi(t) \in [a, b]

[2] \phi(\alpha)=a, \; \phi(\beta)=b

[3] \phi(t) has continuous derivative on [\alpha, \beta]

Prove:

\displaystyle\int\limits_{a}^{b}f(x)\;dx =\displaystyle\int\limits_{\alpha}^{\beta}f(\phi(t))\phi'(t)\;dt.


The given premises

f(x) is a continuous function on [a, b]\quad\quad\quad(1)

ensures the existence of the definite integral \displaystyle \int\limits_{a}^{b}f(x)\;dx and the antiderivative of f(x).

Denoting the antiderivative of f(x) as F(x), we obtain

\displaystyle\int\limits_{a}^{b} f(x) \;dx = F(b)-F(a).\quad\quad\quad(2)

We also deduce from [3] that

\phi(t) is continuous on [\alpha, \beta].\quad\quad\quad(3)

Combining [3], [1] and (1),

f(\phi(t)) is continuous on [\alpha, \beta].\quad\quad\quad(4)

Additionally, as per [3],

\phi'(t) is continuous on [\alpha, \beta].\quad\quad\quad(5)

Together, (4) and (5) give

f(\phi(t))\phi'(t) is continuous on [\alpha, \beta].

Consequently, \displaystyle\int\limits_{\alpha}^{\beta}f(\phi(t))\phi'(t)\;dt exists as well.

Now let’s examine F(u), where u=\phi(t). We have

\frac{dF(u)}{dx} = F'(u) \frac{du}{dx} = F'(u)\phi'(t) = f(u)g'(t) = f(\phi(t))\phi'(t)

\implies F(u) = f(\phi(t)) is the antiderivative of f(\phi(t))\phi'(t)

\implies \displaystyle\int\limits_{\alpha}^{\beta}f(\phi(t))\phi'(t)\;dt = F(\phi(t))\bigg|_{\alpha}^{\beta}

= F(\phi(\beta))-F(\phi(\alpha)) \overset{[2]}{=} F(b)-F(a)\overset{(2)}{=}\displaystyle\int\limits_{a}^{b}f(x)\;dx.

This theorem serves as the foundation of a technique widely employed in evaluating definite integrals. By selecting a suitable substitution, the definite integral is transformed into a form that is more manageable or matches a known solution. This method proves particularly valuable for evaluating definite integrals involving complex functions or expressions.

For Example, to evaluate integral

\displaystyle\int\limits_{0}^{a}\log(x+\sqrt{x^2+a^2})\;dx \quad (a>0),

we choose the following substitution for variable x:

\phi(t) = at \implies \phi'(t) =a.

Since 0 \le \phi(t) \le a \implies 0 \le t \le 1, we can rewrite the integral as:

\displaystyle\int\limits_{0}^{1}\left(\log(at + \sqrt{(at)^2+a^2}\right)\cdot a \; dt

and proceed to evaluate the new integral as follows:

\displaystyle\int\limits_{0}^{1}\left(\log(at + |a|\sqrt{t^2+1}\right)\cdot a \; dt

\overset{a>0}{=} \displaystyle\int\limits_{0}^{1}\left(\log(at + a\sqrt{t^2+1}\right)\cdot a \; dt

= \displaystyle\int\limits_{0}^{1}a\left(\log(a\cdot(t+\sqrt{t^2+1})\right)\; dt

= \displaystyle\int\limits_{0}^{1}a\left(\log(a)+\log(t+\sqrt{t^2+1})\right)\; dt

= \displaystyle\int\limits_{0}^{1}a\log(a)\;dt+a\int\limits_{0}^{1}\log(t+\sqrt{t^2+1})\; dt

= \displaystyle a\log(a) t\bigg|_{0}^{1} + a\int\limits_{0}^{1}\mathrm{arcsinh(t)}\;dt

= a\log(a) + a\cdot\left(t\cdot\mathrm{arcsinh(t)} - \sqrt{t^2+1}\right)\bigg|_{0}^{1}

= a\log(a) + a\cdot\left(\mathrm{arcsinh(1)}-\sqrt{2} + 1\right)

= a\log(a) + a\cdot\mathrm{arcsinh(1)} -\sqrt{2}a + a.


Let’s verify the result:

Suppose G(x) = \displaystyle\int \log(x+\sqrt{x^2+a^2})\; dx. Then

G(x) = \displaystyle \int x' \cdot\log(x+\sqrt{x^2+a^2})\;dx

= \displaystyle x\log(x+\sqrt{x^2+a^2})-\int x\cdot \frac{1+\frac{1}{2}\frac{2x}{\sqrt{x^2+a^2}}}{x+\sqrt{x^2+a^2}}\;dx

= \displaystyle x\log(x+\sqrt{x^2+a^2})-\int x \cdot \frac{(1+\frac{x}{\sqrt{x^2+a^2}})(\sqrt{x^2+a^2}-x)}{a^2}\;dx

= \displaystyle  x\log(x+\sqrt{x^2+a^2}) -\int x \cdot\frac{\sqrt{x^2+a^2}+x-x-\frac{x^2}{\sqrt{x^2+a^2}}}{a^2}\;dx

= \displaystyle  x\log(x+\sqrt{x^2+a^2}) - \int x\cdot\frac{\sqrt{x^2+a^2}-\frac{x^2}{x^2+a^2}}{a^2}\;dx

= \displaystyle x\log(x+\sqrt{x^2+a^2}) - \int x\cdot\frac{\frac{x^2+a^2-x^2}{\sqrt{x^2+a^2}}}{a^2}\;dx

= \displaystyle x\log(x+\sqrt{x^2+a^2}) -\int \frac{x}{\sqrt{x^2+a^2}}\; dx

= x\log(x+\sqrt{x^2+a^2}) - \sqrt{x^2+a^2}.

By Newton-Leibniz rule,

\displaystyle\int\limits_{0}^{a} \log(x+\sqrt{x^2+a^2}) \; dx=G(a) - G(0)

= \underbrace{a\log(a+\sqrt{a^2+a^2})-\sqrt{a^2+a^2}}_{G(a)}-\underbrace{(0 - \sqrt{0+a^2})}_{G(0)}

=  a\log(a\cdot(1 + \sqrt{1+1}))-\sqrt{2}a-(0 - a)

= a\log(a) + a\cdot\log(1+\sqrt{1 + 1}) - \sqrt{2}a + a

= a\log(a) + a\cdot\mathrm{arcsinh(1)} -\sqrt{2}a + a.


For grins, we also verify as follows:

I(\beta) = \displaystyle\int\limits_{0}^{a}\log(x+\sqrt{x^2+\beta^2})\;dx, \quad\beta>0

\implies \displaystyle\frac{dI(\beta)}{d\beta} = \int\limits_{0}^{a} \frac{\partial}{\partial \beta}\log(x + \sqrt{x^2+\beta^2})\;dx

= \displaystyle\int\limits_{0}^{a}\frac{1}{x+\sqrt{x^2+\beta^2}}\cdot\frac{1}{2\sqrt{x^2+\beta^2}}\cdot 2\beta\; dx

= \displaystyle\int\limits_{0}^{a}\frac{\sqrt{x^2+\beta^2}-x}{\beta^2}\cdot\frac{\beta}{\sqrt{x^2+\beta^2}}\;dx

= \displaystyle\int\limits_{0}^{a}\frac{\sqrt{x^2+\beta^2}-x}{\beta}\cdot\frac{1}{\sqrt{x^2+\beta^2}}\;dx

= \displaystyle\int\limits_{0}^{a}\frac{1}{\beta}(1-\frac{x}{\sqrt{x^2+a^2}})\;dx

= \frac{1}{\beta}(x-\sqrt{x^2+\beta^2})\bigg|_{0}^{a}

= \frac{1}{\beta}(a-\sqrt{a^2+\beta^2}+\beta).

That is,

\frac{dI(\beta)}{d\beta} = \frac{a}{\beta}+1-\frac{\sqrt{a^2+\beta^2}}{\beta}.

Integrate it from 1 to \beta,

\displaystyle\int\limits_{1}^{\beta} \frac{dI(\beta)}{d\beta} \;d\beta = \int\limits_{1}^{\beta}\frac{a}{\beta} \;d\beta + \int\limits_{1}^{\beta}1\;d\beta - \int\limits_{1}^{\beta}\frac{\sqrt{\beta^2+a^2}}{\beta}\;d\beta

\implies \displaystyle I(\beta) - I(1) = a \log(\beta)\bigg|_{1}^{\beta} + \beta\bigg|_{1}^{\beta} -\int\limits_{1}^{\beta}\frac{\sqrt{\beta^2+a^2}}{\beta}\;d\beta

\implies \displaystyle I(\beta) - I(1) = a\log(\beta) + \beta -1 - \int\limits_{1}^{\beta}\frac{\sqrt{\beta^2+a^2}}{\beta}\;d\beta

\overset{(*), (**)}{\implies} \displaystyle I(\beta) - \underbrace{(a \cdot \mathrm{arcsinh}(a) - \sqrt{a^2+1}+1)}_{I(1)=\int\limits_{0}^{a}\log(x+\sqrt{x^2+1})\;dx} =

a\log(a) + \beta -1 -\underbrace{\left(\sqrt{\beta^2+a^2} - \sqrt{a^2+1} - a \cdot \mathrm{arcsinh}(\frac{a}{\beta})+a\cdot \mathrm{arcsinh}(a)\right)}_{\int\limits_{1}^{\beta}\frac{\sqrt{\beta^2+a^2}}{\beta}\;d\beta}

\implies I(\beta) = \mathrm{a\log(\beta) + \beta -\sqrt{\beta^2+a^2} + a\cdot arcsinh(\frac{a}{\beta})}.

Let \beta = a, we obtain

\displaystyle\int\limits_{0}^{a}\log(x+\sqrt{x^2+a^2})\; dx = \mathrm{a\log(a) + a -\sqrt{2}a+a\cdot arcsinh(1)} = \mathrm{a\log(a)+a\cdot arcsinh(1) -\sqrt{2}a + a}.


From “Deriving Two Inverse Functions“, we see that \log(x+\sqrt{x^2+1}) = \mathrm{arcsinh}(x). Therefore,

I(1) = \displaystyle \int\limits_{0}^{a}\log(x + \sqrt{x^2+1}) \; dx

= \displaystyle\int\limits_{0}^{a} \mathrm{arcsinh}(x)\;dx

= \displaystyle\int\limits_{0}^{a} x'\cdot \mathrm{arcsinh}(x)\;dx

= \displaystyle x\cdot\mathrm{arcsinh}(x)\bigg|_{0}^{a} -\int\limits_{0}^{a}\frac{x}{\sqrt{x^2+1}}\;dx

= a\cdot\mathrm{arcsinh}(a) - \sqrt{x^2+1}\bigg|_{0}^{a}

= a\cdot \mathrm{arcsinh}(a) - \sqrt{a^2+1}+1.\quad\quad\quad(*)

Now, letting \phi(t) = a\cdot t, we have

1 \le at \le \beta \implies \frac{1}{a} \le t \le \frac{\beta}{a}, \phi'(t) = a and \displaystyle \int\limits_{1}^{\beta}\frac{\sqrt{\beta^2+a^2}}{\beta}\;d\beta becomes

\displaystyle \int\limits_{\frac{1}{a}}^{\frac{\beta}{a}}a\frac{\sqrt{t^2+1}}{t}\;dt

= \displaystyle a\int\limits_{\frac{1}{a}}^{\frac{\beta}{a}}\frac{\sqrt{t^2+1}}{t}\;dt

= a\left(\sqrt{1+t^2}-\mathrm{arcsinh}(\frac{1}{t})\right)\bigg|_{\frac{1}{a}}^{\frac{\beta}{a}}

(see “Integral: I vs. CAS“)

= \sqrt{\beta^2+1} - \sqrt{a^2+1} - a\cdot \mathrm{arcsinh}(\frac{a}{\beta}) + a\cdot\mathrm{arcsinh}(a).\quad\quad\quad(**)


Exercise-1 \displaystyle\int\limits_{0}^{1} \sqrt{1-x^2} \;dx

Exercise-2 \displaystyle\int\limits_{0}^{1} \frac{\log(1+x)}{1+x^2}\;dx (Hint: Consider \phi(t) = \frac{1-t}{1+t})

Leave a comment