An Analytic Proof of the Extraordinary Euler Sum

In Deriving the Extraordinary Euler Sum , we derived one of Euler’s most celebrated results:

\displaystyle 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + ... = \frac{\pi^2}{6}\quad\quad\quad(1)

Now, we aim to provide a rigorous proof of this statement.

First, we expressed the partial sum of the left-hand side as follows:

\displaystyle \sum\limits_{i=1}\frac{1}{i^2} = \sum\limits_{i=1}\frac{1}{(2i)^2} + \sum\limits_{i=0}\frac{1}{(2i+1)^2}

This splits the partial sum into two parts: one involving the squares of even numbers and the other involving the squares of odd numbers. Simplifying the even part gives us:

\displaystyle \sum\limits_{i=1}\frac{1}{i^2} = \frac{1}{4}\sum\limits_{i=1}\frac{1}{i^2} + \sum\limits_{i=0}\frac{1}{(2i+1)^2}

Rearranging terms \displaystyle \sum\limits_{i=1}\frac{1}{i^2} on one side, we obtain:

\displaystyle \frac{3}{4}\sum\limits_{i=1}\frac{1}{i^2}=\sum\limits_{i=0}\frac{1}{(2i+1)^2}

Since \displaystyle \sum_{i=1}\frac{1}{i^2} converges to \displaystyle \sum_{i = 1}^{\infty}\frac{1}{i^2} (see My Shot at Harmonic Series)

\displaystyle \implies \sum\limits_{i=0} \frac{1}{(2i+1)^2} converges to \displaystyle \sum\limits_{i=0}^{\infty}\frac{1}{(2i+1)^2} = \frac{3}{4}\sum\limits_{i=1}^{\infty}\frac{1}{i^2},

to prove (1), it suffices to demonstrate that

\displaystyle \frac{4}{3}\sum\limits_{i=0}^{\infty}\frac{1}{(2i+1)^2} = \frac{\pi^2}{6}

or equivalently,

\displaystyle \sum\limits_{i=0}^{\infty}\frac{1}{(2i+1)^2} = \frac{\pi^2}{8}\quad\quad\quad(2)

Let \displaystyle I = \int\limits_{0}^{\infty}\frac{\arctan(x)}{1+x^2}\;dx and J(\beta) = \displaystyle \int\limits_{0}^{\infty}\frac{\arctan(\beta x)}{1+x^2}\;dx, we have

\displaystyle J(1) = I = \frac{1}{2}\arctan^2(x)\bigg|_{0}^{\infty} = \frac{1}{2}\left(\frac{\pi}{2}\right)^2=\frac{\pi^2}{8}\quad\quad\quad(3)

and

J(0) = 0\quad\quad\quad(4)

Differentiating \displaystyle  J(\beta) with respect to \beta:

\frac{d}{d\beta}J(\beta) = \displaystyle\frac{d}{d\beta}\int\limits_{0}^{\infty}\frac{\arctan(\beta x)}{1+x^2}\;dx = \int\limits_{0}^{\infty}\frac{\partial}{\partial \beta}\left(\frac{\arctan(\beta x)}{1+x^2}\right)\;dx

= \displaystyle \int\limits_{0}^{\infty}\frac{1}{1+x^2}\cdot\frac{x}{\beta^2x^2+1}\;dx

That is,

\frac{d}{d\beta}J(\beta) = \displaystyle \int\limits_{0}^{\infty}\frac{x}{(1+x^2)(\beta^2x^2+1)}\;dx

Integrating with respect to \beta from 0 to 1:

\displaystyle\int\limits_{0}^{1}\frac{d}{d\beta}J(\beta)\;d\beta = \int\limits_{0}^{1}\int\limits_{0}^{\infty}\frac{x}{(1+x^2)(\beta^2 x^2+1)}\;dx\;d\beta

and expressing the integrand in partial fractions:

yields

J(1) - J(0) = \displaystyle\int\limits_{0}^{1}\int\limits_{0}^{\infty}\frac{1}{\beta^2-1}\left(\frac{\beta^2x}{\beta^2x^2+1} - \frac{x}{x^2+1}\right)\;dx\;d\beta

= \displaystyle\int\limits_{0}^{1}\int\limits_{0}^{\infty}\frac{1}{\beta^2-1}\cdot\frac{1}{2}\cdot\left(\frac{2\beta^2x}{\beta^2x^2+1} - \frac{2x}{x^2+1}\right)\;dx\;d\beta

= \displaystyle\int\limits_{0}^{1}\frac{1}{2(\beta^2-1)}\int\limits_{0}^{\infty}\left(\frac{2\beta^2x}{\beta^2x^2+1} - \frac{2x}{x^2+1}\right)\;dx\;d\beta

= \displaystyle\int\limits_{0}^{1}\frac{1}{2(\beta^2-1)}\log\left(\frac{\beta^2 x^2+1}{x^2+1}\right)\bigg|_{0}^{\infty}\;d\beta

= \displaystyle\int\limits_{0}^{1}\frac{1}{2(\beta^2-1)}\lim\limits_{x \rightarrow \infty}\log\left(\frac{\beta^2 x^2+1}{x^2+1}\right)\;d\beta = \displaystyle\int\limits_{0}^{1}\frac{1}{2(\beta^2-1)}\lim\limits_{x \rightarrow \infty}\log\left(\frac{\beta^2 + \frac{1}{x^2}}{1+\frac{1}{x^2}}\right)\;d\beta

= \displaystyle\int\limits_{0}^{1}\frac{1}{2(\beta^2-1)}\log(\beta^2)\;d\beta=\boxed{\int\limits_{0}^{1}\frac{\log(\beta)}{\beta^2-1}\;d\beta=\displaystyle\int\limits_{0}^{1}\sum\limits_{i=0}^{\infty}\frac{\beta^{2i}}{2i+1}\;d\beta \quad\quad(\star)}

= \displaystyle\sum\limits_{i=0}^{\infty}\int\limits_{0}^{1}\frac{\beta^{2i}}{2i+1}\;d\beta= \displaystyle\sum\limits_{i=0}^{\infty}\left(\frac{1}{2i+1}\underline{\int\limits_{0}^{1}\beta^{2i}\;d\beta}\right)=\sum\limits_{i=0}^{\infty}\frac{1}{2i+1}\cdot\underline{\frac{\beta^{2i+1}}{2i+1}\bigg|_{0}^{1}}

= \displaystyle\sum\limits_{i=0}^{\infty}\frac{1}{(2i+1)^2}

i.e.,

J(1)-J(0) = \displaystyle\sum\limits_{i=0}^{\infty}\frac{1}{(2i+1)^2}.

By (3) and (4),

\displaystyle\frac{\pi^2}{8}-0 =\sum\limits_{i=0}^{\infty}\frac{1}{(2i+1)^2}

or

\displaystyle\sum\limits_{i=0}^{\infty}\frac{1}{(2i+1)^2} = \frac{\pi^2}{8}

which is (2)


Prove \boxed{\int\limits_{0}^{1}\frac{\log(\beta)}{\beta^2-1}\;d\beta=\displaystyle\int\limits_{0}^{1}\sum\limits_{i=0}^{\infty}\frac{\beta^{2i}}{2i+1}\;d\beta \quad\quad(\star)}

Since

\displaystyle\frac{d}{d\beta}v = \frac{1}{\beta^2-1} = \frac{1}{\beta-1}-\frac{1}{\beta+1}

means

v = \displaystyle \frac{1}{2}\int\frac{1}{\beta-1}-\frac{1}{\beta+1}\;d\beta = \frac{1}{2}\log\left(\frac{|\beta-1|}{|\beta+1|}\right) \overset{\beta \le 1}{=}\frac{1}{2}\log\left(\frac{1-\beta}{\beta+1}\right),

we have

\displaystyle\int\limits_{0}^{1}\frac{\log(\beta)}{\beta^2-1}\;d\beta = \int\limits_{0}^{1}\log(\beta)\cdot\frac{d}{d\beta}\left(\frac{1}{2}\log\left(\frac{1-\beta}{1+\beta}\right)\right)\;d\beta

= \displaystyle\log(\beta)\cdot\frac{1}{2}\log\left(\frac{1-\beta}{1+\beta}\right)\bigg|_{0}^{1} - \int\limits_{0}^{1}\frac{1}{\beta}\cdot\frac{1}{2}\log\left(\frac{1-\beta}{1+\beta}\right)\;d\beta

= \displaystyle\frac{1}{2}\cdot\underline{\log\left(\beta\right)\log\left(\frac{1-\beta}{1+\beta}\right)\bigg|_{0}^{1}} - \int\limits_{0}^{1}\frac{1}{\beta}\cdot\frac{1}{2}\log\left(\frac{1-\beta}{1+\beta}\right)\;d\beta

\boxed{\log\left(\beta\right)\log\left(\frac{1-\beta}{1+\beta}\right)\bigg|_{0}^{1}=0\quad\quad\quad(\star\star)}

= \displaystyle\int\limits_{0}^{1}\frac{1}{\beta}\cdot\frac{1}{2}\cdot\log\left(\frac{1+\beta}{1-\beta}\right)\;d\beta

Expand \log(\frac{1+\beta}{1-\beta}) into its Maclaurin series:

= \displaystyle \int\limits_{0}^{1}\frac{1}{\beta}\cdot\frac{1}{2}\cdot2\sum\limits_{i=0}^{\infty}\frac{\beta^{2i+1}}{2i+1}\;d\beta = \int\limits_{0}^{1}\sum\limits_{i=0}^{\infty}\frac{\beta^{2i}}{2i+1}\;d\beta


Prove \boxed{\log\left(\beta\right)\log\left(\frac{1-\beta}{1+\beta}\right)\bigg|_{0}^{1}=0\quad\quad\quad(\star\star)}

For \displaystyle k \in \mathbb{R}, \log(x)\log(1+kx) = \log(x)\cdot x \cdot \frac{1}{x}\cdot\log(1+kx) = \log(x)x \cdot \frac{\log(1+kx)}{x}

We have

\displaystyle\lim\limits_{x \rightarrow 0}\log(x)x = \lim\limits_{x \rightarrow 0} \frac{\log(x)}{\frac{1}{x}}=\lim\limits_{x \rightarrow 0} \frac{\frac{1}{x}}{-\frac{1}{x^2}} = \lim\limits_{x \rightarrow 0}-x = 0

\displaystyle \lim\limits_{x \rightarrow 0}\frac{\log(1+kx)}{x} = \lim\limits_{x \rightarrow 0}\frac{\frac{k}{1+kx}}{1} = k.

As a result,

\displaystyle \lim\limits_{x \rightarrow 0} \log(x)\log(1+kx) = \lim\limits_{x \rightarrow 0} \log(x)x \cdot \lim\limits_{x \rightarrow 0} \frac{\log(1+kx)}{x}=0\cdot k = 0. i.e.,

\displaystyle \lim\limits_{x \rightarrow 0} \log(x)\log(1+kx) = 0, \quad k \in \mathbb{R}\quad\quad\quad(\star\star-1)

Moreover,

\displaystyle \lim\limits_{\beta \rightarrow 1}(\log(\beta)\cdot\log(1-\beta)-\log(\beta)\log(1+\beta))

\displaystyle= \lim\limits_{\beta \rightarrow 1}\log(\beta)\cdot\log(1-\beta)-\underbrace{\lim\limits_{\beta \rightarrow 1}\log(\beta)\cdot\log(1+\beta)}_{0}

Let \displaystyle x = 1-\beta \implies \beta=1-x and \beta \rightarrow 1 \implies x \rightarrow 0

\displaystyle = \lim\limits_{x \rightarrow 0}\log(x)\log(1-x)

\displaystyle = \lim\limits_{x \rightarrow 0}\log(x)\log(1+(-1) x) \overset{(\star\star-1)}{=} 0

gives

\displaystyle \lim\limits_{\beta \rightarrow 1}(\log(\beta)\log(1-\beta)-\log(\beta)\log(1+\beta))=0.\quad\quad\quad(\star\star-2)

It follows that

\displaystyle \log(\beta)\log(\frac{1-\beta}{1+\beta})\bigg|_{0}^{1}

\displaystyle = \lim\limits_{\beta \rightarrow 1}\log(\beta)(\log(1-\beta) - \log(1+\beta)) - \lim\limits_{\beta \rightarrow 0}\log(\beta)(\log(1-\beta) - \log(1+\beta))

\displaystyle \overset{(\star\star-2)}{=} 0 -\lim\limits_{\beta \rightarrow 0}\log(\beta)\log(1+(-1)\cdot\beta) + \lim\limits_{\beta \rightarrow 0} \log(\beta)\log(1+1\cdot\beta)\overset{(\star\star-1)}{=} 0


Leave a comment